Immunonephelometry and Reverse Hybrydization Genotyping in Diagnosis of Alpha-1-Antitrypsin Deficiency in Macedonians

Main Article Content

Olivija Efinska-Mladenovska
Dejan Trajkov
Aleksandar Petlichkovski
Olgica Sibinovska
Slavica Hristomanova Mitkovska
Mirko Spiroski

Abstract

BACKGROUND: With a frequency of 1:1600, the alpha-1-antitrypsin deficiency is one of the most frequent hereditary diseases and can be recessively inherited. AAT deficiency is most often caused by inheritance of the so-called PiZ allele. Inheritance of this allele increases the risk of developing chronic obstructive pulmonary diseases (COPD) and liver disease.

AIM: The aim of this study was to present immunonephelometry and reverse hybridization genotyping in diagnosis of alpha-1-antitrypsin deficiency in Republic of Macedonia.

MATERIAL AND METHODS: At the Institute of Immunobiology and Human Genetics, part of the Faculty of Medicine in Skopje, in the previous 7 years, total of 361 patients with suspected alpha-1-antitrypsin (AAT) deficiency were referred for analysis of AAT concentration using nephelometry (Dade Behring) and subsequent AAT genotyping of individuals with alpha-1-antytripsin deficiency at protein level, based on reverse hybridization technique.

RESULTS: Measurement of AAT concentration (g/l) by nephelometry have shown normal level in the range of 1.37-1.41 g/l (88%), lower than normal AAT levels in the range of 0.70-0.83 g/l (8.03%), and concentration above the normal levels in the range of 2.28-2.4 g/l (3.88%).

CONCLUSION: Diagnosis in the case of a suspicion of AAT deficiency is carried out by measuring the alpha-1-antitrypsin level in blood and by genotyping of alpha-1-antytripsin allele.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Efinska-Mladenovska O, Trajkov D, Petlichkovski A, Sibinovska O, Hristomanova Mitkovska S, Spiroski M. Immunonephelometry and Reverse Hybrydization Genotyping in Diagnosis of Alpha-1-Antitrypsin Deficiency in Macedonians. SEE J Immunol [Internet]. 2015 Feb. 13 [cited 2023 Sep. 23];1(1):1-6. Available from: https://seejim.eu/index.php/seejim/article/view/seejim.2015.20004
Section
Basic Immunology

References

Stoller JK and Aboussouan LS. Alpha-1-antitrypsin deficiency. Lancet 2005;365:2225-36.

DeMeo DL and Silverman EK. Alpha-1-antitrypsin deficiency. 2: Genetic aspects of alpha-1-antitrypsin deficiency: phenotypes and genetics modifiers of emphysema risk. Thorax. 2004; 59:259-64.

Lee WL and Downey GP. Leukocyte elastase: physiological functions and role in acute lung injury. Am J Respir Crit Care Med. 2001; 164:896-904.

Cox DW, Johnson AM, Fagerhol MK. Report of nomenclature meeting for alpha-1-antitrypsin. Hum Genet. 1980; 53:429-33.

Brantly M, Nukiwa T, Crystal RG. Molecular bases of alpha-1-antitrypsin deficiency. Am J Med. 1988; 84:13-31.

Stoller JK. Alpha-1-antitrypsin deficiency. Thorax. 2004; 59:92-3.

Turino GM, Barker AT, Brantly ML, Cohen AB, Connely RP, Crystal AG, et al. Clinical features of individuals with P*SZ phenotype of alpha-1-antitrypsin deficiency. Am J Respir Crit Care Med. 1996; 154:1718-25.

Dahl M, Hersh CP, Ly NP, Berkey CS, Silverman EK, Nordestgaard BG. The protease inhibitor P*S allele and COPD: a meta-analysis. Eur Respir J. 2005; 26:67-76.

Long GL, Chandra T, Woo SL, Davie EW, Kurachi K. Complete sequence of the cDNA human alpha-1-antitrypsin and the gene for the S variant. Biochemistry. 1984; 23:4828-37.

Curiel DT, Chytil A, Courtney M, Crystal RG. Serum alpha-1-antitrypsin deficiency associated with the common S-type (glu264-to-val) mutation results from intracellular degradation of alpha-1-antitrypsin prior to secretion. J Biol Chem. 1989; 264:10477-86.

Ibarguen E, Gross CR, Savik K, Sharp HL. Liver disease in alpha-1-antitrypsin: Prognostic indicators. J Pediatr. 1990; 117:864-70.

Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG. Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha-1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med. 2002; 136:270-279.

Larsson C, Natural history and life expectancy in severe alpha-1-antitrypsin deficiency, PiZ. Acta Med Scand. 1978; 204:345-51.

Janus ED, Phillips NT, Carrei R W. Smoking, lung function and alpha-1-antitrypsin deficiency. Lancet. 1985; 1:152-4.

Corbo GM, Forastiere F, Agabiti N, Dell'Orco V, Pistelli R, Massi G,et al. Passive smoking and lung function in alpha-1-antitrypsin heterozygote school-children. Thoraks. 2003; 58:237-41.

Mayer AS, Stoller JK, Bucher Bartelson B, James Ruttenber A, Sandhaus RA, Newman LS. Occupational exposure risks in individuals with Pi*Z α1-antitrypsin deficiency. Am J Respir Crit Care Med. 2000; 162:553-8.

Pitulainen E, Sveger T. Effect of environmental and clinical factors on lung functions and respiratory simtoms in adolescents with alpha-1-antitrypsin deficiency. Acta Paediatar. 1998; 87:1120-4.

De La Roza C et al. Alpha-1-antitrypsin deficiency: Situation in Spain and development of a screening program. Arch Bronconeumol. 2006; 42(6):290-8.

Towner P. Purification of DNA . Essential Molecular Biology (ed. T. A.Brown). Oxford University Press: Oxford, 1995:47-54.

Spiroski M, Arsov T, Petlichkovski A, Strezova A,Trajkov D, Efinska-Mladenovska O et al. Case study: Macedonian Human DNK Bank (hDNAMKD) as a source for public health Genetics. In: Health Determinants in the Scope of New Public Health. Ed. By Georgieva L, Burazeri G. Hans Jacobs Company: Sofia, 2005:33-44.

Braun A, Mayer P, Cleve H, Roscher AA.Rapid and simple diagnosis of the two common α1-proteinase inhibitor deficiency alleles PiZ and PiS by DNA analysis. Eur J Clin Chem Clin Biochem. 1996; 34(9):761-764.

Zuntar I, Topic E, Jurcic Z, Cekada S. Genotyping of α1-Antitrypsin S and Z alleles. Clin Lab. 1998; 44:837-843.

Cox DW. Alpha-1-antitrypsin. In: Scriver CR, Beaudet AL, Sly WS, Valle D. (eds.). The Metabolic and Molecular Bases of Inherited Disease. Vol. IV. New York: McGraw-Hill (8th ed.), 2001: Pp. 5559-5584.

Long GL, Chandra T, Woo SL, Davie EW, Kurachi K. Complete sequence of the cDNA for human alpha 1-antitrypsin and the gene for the S variant. Biochemistry. 1984;23(21):4828-37.

Crystal RG. The alpha 1-antitrypsin gene and its deficiency states. Trends Genet. 1989;5(12):411-7.

Nukiwa T, Brantly M, Garver R, Paul L, Courtney M, LeCocq JP, Crystal RG. Evaluation of "at risk" alpha 1-antitrypsin genotype SZ with synthetic oligonucleotide gene probes. J Clin Invest. 1986;77(2):528-37.

Fraizer GC, Harrold TR, Hofker MH, Cox DW. In-frame single codon deletion in the Mmalton deficiency allele of alpha 1-antitrypsin. Am J Hum Genet. 1989;44(6):894-902.

Curiel DT, Holmes MD, Okayama H, Brantly ML, Vogelmeier C, Travis WD, Stier LE, Perks WH, Crystal RG. Molecular basis of the liver and lung disease associated with the alpha 1-antitrypsin deficiency allele Mmalton. J Biol Chem. 1989;264(23):13938-45.

Alpha-1-antitrypsin: molecular abnormality of S variant. Br Med J. 1976;1(6002):130-1.

Yoshida A, Ewing C, Wessels M, Lieberman J, Gaidulis L. Molecular abnormality of PI S variant of human alpha1-antitrypsin. Am J Hum Genet. 1977;29(3):233-9.

Long GL, Chandra T, Woo SL, Davie EW, Kurachi K. Complete sequence of the cDNA for human alpha 1-antitrypsin and the gene for the S variant. Biochemistry. 1984;23(21):4828-37.

Curiel DT, Chytil A, Courtney M, Crystal RG. Serum alpha 1-antitrypsin deficiency associated with the common S-type (Glu264----Val) mutation results from intracellular degradation of alpha 1-antitrypsin prior to secretion. J Biol Chem. 1989;264(18):10477-86.