ROS-mediated Cytotoxicity and Macrophage Activation Induced by TiO2 Nanoparticles with Different in vitro Non-Cellular Photocatalytic Activities

Main Article Content

Traian Popescu
Lidia Cremer
Mihaela Tudor
Andreea-Roxana Lupu

Abstract

AIM: The aim of the study described in the present paper was to assess several in vitro effects of TiO2 nanoparticles with different colloidal and photocatalytic properties on RAW 264.7 macrophages.

METHODS: The cells were exposed to Degussa P25 titania and two other types of nanoparticles synthesized by a hydrothermal procedure in our laboratory: undoped and Fe3+-doped TiO2. Compared to Degussa P25, the hydrothermal nanomaterials were significantly less active in inducing cytotoxicity, production of intracellular reactive oxygen species (ROS) and release of pro-inflammatory cytokine interleukin-6 (IL-6). The induced effects were analysed with respect to nanoparticle size, surface charge, hydrophilicity, semiconductor bandgap energy and photocatalytic generation of ROS under non-cellular conditions.

RESULTS: The overall results indicated that TiO2 nanoparticles with higher surface charge, hydrophilic surfaces and enhanced photocatalytic properties may preferentially induce macrophage cell damage and inflammation compared to other TiO2 nanomaterials.

CONCLUSION: The present findings are relevant for studies regarding the evaluation of risks raised by self-cleaning technologies involving nanosized hydrophilic TiO2 photocatalysts as well as development of synthesis methods optimized for producing biocompatible TiO2 nanomaterials.

Downloads

Download data is not yet available.

Plum Analytics

Article Details

How to Cite
1.
Popescu T, Cremer L, Tudor M, Lupu A-R. ROS-mediated Cytotoxicity and Macrophage Activation Induced by TiO2 Nanoparticles with Different in vitro Non-Cellular Photocatalytic Activities. SEE J Immunol [Internet]. 2016 Apr. 18 [cited 2024 Apr. 19];2(1):1-8. Available from: https://seejim.eu/index.php/seejim/article/view/seejim.2016.20007
Section
Basic Immunology

References

Linsebigler AL, Lu G, Yates JT Jr.Photocatalysis on TiOn Surfaces: Principles, Mechanisms and Selected Results. Chem Rev. 1995;95:735-758. http://dx.doi.org/10.1021/cr00035a013

Fujishima A,Rao TN, Tryk DA.Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000;1:1-21. http://dx.doi.org/10.1016/S1389-5567(00)00002-2

Carp O, Huisman CL,Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry. 2004;32:33-177. http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001

Son HS, Lee SJ, Cho IH,Zoh KD.Kinetics and mechanism of TNT degradation in TiO2photocatalysis. Chemosphere. 2004;57(4):309-317. http://dx.doi.org/10.1016/j.chemosphere.2004.05.008 PMid:15312729

Hashimoto K,Irie H,Fujishima A. TiO2Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics. 2005; 44(12):8269-8285. http://dx.doi.org/10.1143/JJAP.44.8269

Chen X, Mao SS.Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chem Rev. 2007;107(7):2891–2959. http://dx.doi.org/10.1021/cr0500535 PMid:17590053

Kumar SG, Devi LG.Review on Modified TiO2Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J Phys Chem A. 2011;115(46):13211–13241. http://dx.doi.org/10.1021/jp204364a PMid:21919459

Pap Z, Radu A, Hidi IJ, et al.Behavior of gold nanoparticles in a titania aerogel matrix: photocatalytic activity assessment and structure investigations. Chinese Journal of Catalysis. 2013;34:734–740. http://dx.doi.org/10.1016/S1872-2067(11)60500-7

Chen RS, Chen CA, Tsai HY, Wang WC, Huang YS. Photoconduction Properties in Single-Crystalline Titanium Dioxide Nanorods with Ultrahigh Normalized Gain. J Phys Chem C. 2012; 116(6):4267–4272. http://dx.doi.org/10.1021/jp209999j

Meena R, Pal R, Pradhan SN, Rani M, Paulraj R. Comparative study of TiO2 and TiSiO4 nanoparticles induced oxidative stress and apoptosis of HEK-293 cells. Adv Mat Lett. 2012;3(6):459-465.

Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients. Sixth Ed. Pharmaceutical Press and American Pharmacists Association, 2009.

Contado C,Pagnoni A. TiO2nano- and micro-particles in commercial foundation creams: Field Flow-Fractionation techniques together with ICP-AES and SQW Voltammetry for their characterization. Analytical Methods. 2010;2(8):1112-1124. http://dx.doi.org/10.1039/c0ay00205d

Lorenz C, Tiede K, Tear S, Boxall A, von Goetz N, Hungerbuhler K. Imaging and Characterization of Engineered Nanoparticles in Sunscreens by Electron Microscopy, Under Wet and Dry Conditions.International Journal of Occupational and Environmental Health. 2010;16(4):406-428. http://dx.doi.org/10.1179/oeh.2010.16.4.406 PMid:21222385

Scotter MJ. Methods for the determination of European Union-permitted added natural colours in foods: a review. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment. 2011; 28(5):527-596. http://dx.doi.org/10.1080/19440049.2011.555844 PMid:21424961

Diamanti MV, Ormellese M, Pedeferri MP. Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cement and Concrete Research. 2008;38(11):1349–1353. http://dx.doi.org/10.1016/j.cemconres.2008.07.003

Quagliarini E, Bondioli F, Goffredo G-B, Cordoni C, Munafò P. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construction and Building Materials. 2012;37:51–57. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.006

Herrera Melián JA, Do-a Rodrć±Ìgue JM, Viera Suárez A, et al. The photocatalytic disinfection of urban waste waters. Chemosphere. 2000;41(3):323–327. http://dx.doi.org/10.1016/S0045-6535(99)00502-0

Fu G, Vary PS, Lin C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J Phys Chem B. 2005;109(18):8889-8898.

http://dx.doi.org/10.1021/jp0502196 PMid:16852057

Chung CJ, Lin HI, Tsou HK, Shi ZY, He JL.An antimicrobial TiO2 coating for reducing hospital-acquired infection. J Biomed Mater Res B: Appl Biomater. 2008;85(1):220-224. http://dx.doi.org/10.1002/jbm.b.30939 PMid:17854067

Skoczen SL, Potter TM, Dobrovolskaia MA. In vitro analysis of nanoparticle uptake by macrophages using chemiluminescence. Methods Mol Biol. 2011;697:255-261. http://dx.doi.org/10.1007/978-1-60327-198-1_27 PMid:21116975

Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nature Materials. 2014;13:125–138. http://dx.doi.org/10.1038/nmat3780 PMid:24452356

Forman HJ, Torres M. Redox signaling in macrophages. Molecular Aspects of Medicine. 2001;22(4–5):189–216. http://dx.doi.org/10.1016/S0098-2997(01)00010-3

Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of Silica Particle Size on Macrophage Inflammatory Responses.PLoS ONE. 2014; 9(3): e92634. http://dx.doi.org/10.1371/journal.pone.0092634 PMid:24681489 PMCid:PMC3969333

Manke A, Wang L, Rojanasakul Y.Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Research International. 2013; Article ID 942916.

Kim J-H, Jang A-S, Shin EK, et al. Particle-induced expression of SF20/IL25 is mediated by reactive oxygen species and NF-κB in alveolar macrophages. Mol Cell Toxicol. 2010;6:305-312. http://dx.doi.org/10.1007/s13273-010-0041-2

Akdis M, Burgler S, Crameri R, et al. Interleukins, from 1 to 37, and interferon-g: Receptors, functions, and roles in diseases. J Allergy ClinImmunol. 2011;127(3):701-721. http://dx.doi.org/10.1016/j.jaci.2010.11.050 PMid:21377040

Barnes TC, Anderson ME, Moots RJ. TheMany Faces of Interleukin-6: The Role of IL-6 in Inflammation, Vasculopathy and Fibrosis in Systemic Sclerosis. International Journal of Rheumatology. 2011; Article ID 721608. http://dx.doi.org/10.1155/2011/721608 PMid:21941555 PMCid:PMC3176444

Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(Suppl 2):S3. http://dx.doi.org/10.1186/ar1917 PMid:16899107 PMCid:PMC3226076

Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, et al. Structural and photocatalytic properties of iron-and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys. 2008;112(1):146–153. http://dx.doi.org/10.1016/j.matchemphys.2008.05.023

Popescu T, Lupu AR, Diamandescu L, et al. Effects of TiO2 nanoparticles on the NO2- levels in cell culture media analyzed by Griess colorimetric methods. Journal of Nanoparticle Research. 2013;15: 1449-1466. http://dx.doi.org/10.1007/s11051-013-1449-0

Ding X, An T, Li G, et al. Preparation and characterization of hydrophobic TiO2 pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. J Colloid Interface Sci. 2008; 320:501–507. http://dx.doi.org/10.1016/j.jcis.2007.12.042 PMid:18279880

Lupu AR, Popescu T. The noncellular reduction of the MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays. Toxicol In Vitro. 2013;27(5):1445–1450. http://dx.doi.org/10.1016/j.tiv.2013.03.006 PMid:23531555

Popescu T, Lupu AR, Raditoiu V, Purcar V, Teodorescu VS. On the photocatalytic reduction of MTT tetrazolium salt on the surface of TiO2 nanoparticles: Formazan production kinetics and mechanism. J Colloid Interface Sci. 2015;457:108-120. http://dx.doi.org/10.1016/j.jcis.2015.07.005 PMid:26164242

Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M. Protein-Nanoparticle interactions. The Bio-Nano Interface. Springer-Verlag Berlin Heidelberg. 2013. http://dx.doi.org/10.1007/978-3-642-37555-2

Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today. 2008;3:40-47. http://dx.doi.org/10.1016/S1748-0132(08)70014-8

Lundqvist M, Stigler J, Cedervall T, et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 2011;5:7503-7509. http://dx.doi.org/10.1021/nn202458g PMid:21861491

Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev. 2011;111:5610-5637. http://dx.doi.org/10.1021/cr100440g PMid:21688848

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428-437. http://dx.doi.org/10.1016/j.addr.2009.03.009 PMid:19376175 PMCid:PMC3683962

Gessner A, Waicz R, Lieske A, Paulke BR, Mader K, Muller RH. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorbtion. Int J Pharm. 2000;196:245-249. http://dx.doi.org/10.1016/S0378-5173(99)00432-9

Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050-2055. http://dx.doi.org/10.1073/pnas.0608582104 PMid:17267609 PMCid:PMC1892985

Wang J, Fan Y. Lung Injury Induced by TiO2 Nanoparticles Depends on Their Structural Features: Size, Shape, Crystal Phases and Surface Coating. Int J Mol Sci. 2014;15:22258-22278. http://dx.doi.org/10.3390/ijms151222258 PMid:25479073 PMCid:PMC4284706

Stark G. Functional consequences of oxidative membrane damage. J Membr Biol. 2005;205(1):1-16. http://dx.doi.org/10.1007/s00232-005-0753-8 PMid:16245038

Othman SH, Rashid SA, Ghazi TIM, Abdullah N. Fe-Doped TiO2 nanoparticles produced via MOCVD: synthesis, characterization, and photocatalytic activity. J Nanomater. 2011; Article ID 571601. http://dx.doi.org/10.1155/2011/571601

Chen B-C, Liao C-C, Hsu M-J, Liao Y-T, Lin C-C, Sheu J-R, Lin C-H. Peptidoglycan-induced IL-6 Production in Raw264.7 Macrophages is Mediated by Cyclooxygenase-2, PGE2/PGE4 Receptors, Protein Kinase A, IkB Kinase and NF-kB. The Journal of Immunology. 2006;177:681-693. http://dx.doi.org/10.4049/jimmunol.177.1.681

Sormou LW, Zhang Z, Li R, Chen N, Guo W, Huo M, Guan S, Lu J, Deng X. Regulation of Inflammatory Cytokines in Lipopolysaccharide Stimulated RAW 264.7 Murine Macrophage by 7-O-Methyl-narigenin. Molecules. 2012;17:3574-3585. http://dx.doi.org/10.3390/molecules17033574 PMid:22441335

Wang H, Cao Z-R. Anti-Inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-stimulated RAW 264.7 Macrophages. Tropical Journal of Pharmaceutical Research. 2014;13(9):1415-1419

Lee A-J, Cho K-J, Kim J-H. MyD88 – BLT2 – dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Experimental & Molecular Medicine. 2015;47:e156. http://dx.doi.org/10.1038/emm.2015.8 PMid:25838003

Ji G, Zhang Y, Yang Q, Cheng S, Hao J, Zhao X, Jiang Z. Genistein Suppresses LPS-Induced Inflammatory Response through inhibiting NF-kB following AMP Kinase Activation in RAW 264.7 Macrophages. PLoS ONE. 2012;7(12): e53101. http://dx.doi.org/10.1371/journal.pone.0053101 PMid:23300870 PMCid:PMC3534028