CD56dim/CD56bright NK cell subpopulations and CD16/CD57 expression correlated with tumor development stages
Main Article Content
Abstract
BACKGROUND: NK cells are characterized by cytotoxic activity against tumor cells and CD3-CD16+CD56+ phenotype. Two distinct subpopulations of NK cells were characterized in the peripheral blood: NK-CD56dim representing over 95% of NK cells and involved in antitumor cytotoxicity, and NK-CD56bright representing approximately 10% of NK cells and involved in secretion of cytokines.
AIM: The aim of the study was to compare the presence of NK-CD56dim/NK-CD56bright subpopulations and their CD16/CD57 expression in peripheral blood NK cells during the particular development stages of malignancy: primary tumor (PT), lymph node invasion (LNI) and distant sites metastases (Mt).
MATERIAL AND METHODS: We have analyzed by flow-cytometry peripheral blood samples from total 36 cancer patients: 24 patients with PT, 6 patients with LNI and 6 patients with Mt.
RESULTS: The presence of the overall NK cells showed no significant variation between patients in different stages of tumor development. The phenotype analysis showed that CD16+ and/or CD57+ cells were lower in LNI patients compared to PT or Mt patients. Double-positive CD16+CD57+ cells were found decreased in patients with Mt, compared to patients with PT. During the stages of tumor development, NK-CD56bright subpopulation increased progressively (7% in PT patients, 13% in LNI patients, 65% in Mt patients), whereas NK-CD56dim subpopulation gradually decreased (92%, 86%, and 35% respectively). CD16/CD57 expression decreased in NK-CD56dim and increased in NK-CD56bright cells over the three studied stages.
CONCLUSION: Our results show changes in NK cells characteristics during tumor development: reversal of NK-CD56dim/NK-CD56brightdistribution and modification of CD16/CD57 expression. Both types of changes can concur in reducing the efficiency of NK cell activity in patients with progressive tumors.
Downloads
Plum Analytics
Article Details
References
Whiteside TL, Herberman RB. The role of human natural killer cells in health and disease. Clin Diagn Lab Immunol. 1994;1:125-33. PMid:7496932 PMCid:PMC368214
Caligiuri MA. Human natural killer cells. Blood. 2008;112:461-9. http://dx.doi.org/10.1182/blood-2007-09-077438 PMid:18650461 PMCid:PMC2481557
Fan YY, Yang BY, Wu CY. Phenotypically and functionally distinct subsets of natural killer cells in human PBMCs. Cell Biol Int. 2008;32:188-97. http://dx.doi.org/10.1016/j.cellbi.2007.08.025 PMid:17920947
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44-9. http://dx.doi.org/10.1126/science.1198687 PMid:21212348 PMCid:PMC3089969
Levy EM, Roberti MP, Mordoh J. Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol. 2011;2011:676198. http://dx.doi.org/10.1155/2011/676198 PMid:21541191 PMCid:PMC3085499
De Saint Basile G, Ménasché G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10:568-79. http://dx.doi.org/10.1038/nri2803 PMid:20634814
Dustin ML, Long EO. Cytotoxic immunological synapses. Immunol Rev. 2010;235:24-34. http://dx.doi.org/10.1111/j.0105-2896.2010.00904.x PMid:20536553 PMCid:PMC2950621
Schí¶nberg K, Fischer JC, Kí¶gler G, Uhrberg M. Neonatal NK-cell repertoires are functionally, but not structurally, biased toward recognition of self HLA class I. Blood. 2011;117:5152-6. http://dx.doi.org/10.1182/blood-2011-02-334441 PMid:21415265
Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116:3865-74. http://dx.doi.org/10.1182/blood-2010-04-282301 PMid:20733159 PMCid:PMC2981540
Romero AI, Thoren FB, Brune M, Hellstrand K. NKp46 and NKG2D receptor expression in NK cells with CD56dim and CD56bright phenotype: regulation by histamine and reactive oxygen species. Br J Haematol. 2005;132:91-8. http://dx.doi.org/10.1111/j.1365-2141.2005.05842.x PMid:16371024
Maltseva DV, Sakharov DA, Tonevitsky EA, Northoff H, Tonevitsky AG. Killer cell immunoglobulin-like receptors and exercise. Exerc Immunol Rev. 2011;17:150-63. PMid:21446357
Wendt K, Wilk E, Buyny S, Buer J, Schmidt RE, Jacobs R. Gene and protein characteristics reflect functional diversity of CD56dim and CD56bright NK cells. J Leukoc Biol. 2006;80:1529-41. http://dx.doi.org/10.1189/jlb.0306191 PMid:16966385
Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano T, Seki S, Hayakawa M. Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK cells but also from CD16- CD56dim NK cells. Scand J Immunol. 2007;65:126-38. http://dx.doi.org/10.1111/j.1365-3083.2006.01883.x PMid:17257217
Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park I, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood. 2010;115:274-81. http://dx.doi.org/10.1182/blood-2009-04-215491 PMid:19897577 PMCid:PMC2808153
Moretta L. Dissecting CD56dim human NK cells. Blood. 2010;116:3689-91. http://dx.doi.org/10.1182/blood-2010-09-303057 PMid:21071612
Beziat V, Descours B, Parizot C, Debre P, Vieillard V. NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS One. 2010;5:e11966. http://dx.doi.org/10.1371/journal.pone.0011966 PMid:20700504 PMCid:PMC2917352
Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell–derived IL-2: a potential new link between adaptive and innate immunity. Blood. 2003;101:3052-7. http://dx.doi.org/10.1182/blood-2002-09-2876 PMid:12480696
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001;97:3146-51. http://dx.doi.org/10.1182/blood.V97.10.3146 PMid:11342442
Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126:458-65. http://dx.doi.org/10.1111/j.1365-2567.2008.03027.x PMid:19278419 PMCid:PMC2673358
Shunyakov L, Ryan CK, Sahasrabudhe DM, Khorana AA. The Influence of host response on colorectal cancer prognosis. Clin Colorectal Cancer. 2004;4:38-45. http://dx.doi.org/10.3816/CCC.2004.n.008 PMid:15207019
Stojanovic A, Cerwenka A. Natural killer cells and solid tumors. J Innate Immun. 2011;3:355-64. http://dx.doi.org/10.1159/000325465 PMid:21502747
Subleski JJ, Wiltrout RH, Weiss JM. Application of tissue-specific NK and NKT cell activity for tumor immunotherapy. J Autoimmun. 2009;33:275-81. http://dx.doi.org/10.1016/j.jaut.2009.07.010 PMid:19682859 PMCid:PMC2783592
Parolini S, Santoro A, Marcenaro E, Luini W, Massardi L, Facchetti F, Communi D, Parmentier M, Majorana A, Sironi M, Tabellini G, Moretta S, Sozzani S. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood. 2007;109:3625-32. http://dx.doi.org/10.1182/blood-2006-08-038844 PMid:17202316
Romagnani C, Juelke K, Falco M, Morandi B, D'Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Munz C, Thiel A, Moretta L, Ferlazzo G. CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol. 2007;178:4947-55. http://dx.doi.org/10.4049/jimmunol.178.8.4947 PMid:17404276
Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the interface between innate and adaptive immunity. Cell Death Diff. 2008;15:226-33. http://dx.doi.org/10.1038/sj.cdd.4402170 PMid:17541426
Miyagi T, Shimizu S, Tatsumi T, Nishio K, Hiramatsu N, Kanto T, Hayashi N, Takehara T. Differential alteration of CD56bright and CD56dim natural killer cells in frequency, phenotype and cytokine response in chronic hepatitis C virus infection. J Gastroenterol. 2011;46:1020-30. http://dx.doi.org/10.1007/s00535-011-0408-8 PMid:21559771
Alter G, Altfeld M. NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. J Int Med. 2008;265:29-42.
http://dx.doi.org/10.1111/j.1365-2796.2008.02045.x PMid:19093958 PMCid:PMC2842208
Kwak-Kim J, Cheol Park J, Kyong Ahn H, Woo Kim J, Gilman-Sachs A. Immunological modes of pregnancy loss. Am J Reprod Immunol. 2010;63:611-23. http://dx.doi.org/10.1111/j.1600-0897.2010.00847.x PMid:20367626
Djulejic E, Petlichkovski A, Trajkov D, Dimitrov G, Alabakovska S. KIR gene frequencies in women with infertility problems. SEE J Immunol. 2015; 2015:20002. http://dx.doi.org/10.3889/seejim.2015.20002
Schleinitz N, Vely F, Harle J-R, Vivier E. Natural killer cells in human autoimmune diseases. Immunology. 2010;131:451-8. http://dx.doi.org/10.1111/j.1365-2567.2010.03360.x PMid:21039469 PMCid:PMC2999796
Surcel M, Huicćƒ R, Ciotaru D, Dobre M, Isvoranu G, Belmega A, Pí®rvu I, Ursaciuc C. Relation between NK cells subpopulations and tetraspanin membrane expression in malignant tumors. In: Schmidt RE (Eds.) 2nd European Congress of Immunology – ECI. Monduzzi Editore, Italy, 2009: 77-81.
Ursaciuc C, Surcel M, Ciotaru D, Dobre M, Pí®rvu IR, Munteanu AN, Alecu M, Huica R. Regulatory T cells and TH1/TH2 cytokines as immunodiagnosis keys in systemic autoimmune diseases. Rom Arch Microbiol Immunol. 2010;69:79-84. PMid:21235134
Gu T, Kilinc MO, Egilmez NK. Transient activation of tumor-associated T-eVector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother. 2008;57:997-1005. http://dx.doi.org/10.1007/s00262-007-0430-0 PMid:18049819